张瑜 讲师
个人介绍:
张瑜,工学博士,深圳技术大学讲师。2011年进入中南大学材料科学与工程专业攻读本科学位。同年参与中南大学与澳大利亚莫纳什大学(Monash University)的中澳联合培养项目,在2016年同时获得中南大学与莫纳什大学授予的荣誉学士学位证书。2015年进入澳大利亚新南威尔士大学的光伏与可再生能源工程学院,于2017年获得光伏太阳能工程的硕士学位(优秀)证书。其后,师从原子沉积氧化铝的开创者Prof Bram Hoex 攻读博士学位,并于2022年7月获得光伏工程的博士学位。2023年10月加入深圳技术大学任讲师,主要研究方向包括:黑硅太阳能电池的制备与优化,黑硅太阳能电池的光学损失与材料缺陷研究,硅太阳能电池的光学模拟,硅太阳能电池失效分析,叠层太阳能电池的失效分析,等等。
教育背景:
2018.02-2022.07 新南威尔士大学(澳大利亚悉尼),光伏工程,博士
2016.03-2017.12 新南威尔士大学(澳大利亚悉尼),光伏工程,硕士
2014.02-2015.12 莫纳什大学(澳大利亚墨尔本),材料科学与工程,本科
2011.09-2013.11 中南大学,材料科学与工程,本科
工作经历:
2023.10-至今 深圳技术大学,新材料与新能源学院,讲师
2019.07-2023.07 新南威尔士大学(澳大利亚悉尼),光伏与光伏与可再生能源工程学院,助理研究员(兼职)
主要荣誉:
2020年:Australia’s top 40 young researchers, awarded by Early Achievers Leaderboard, The Australian Research Special Issue. Research September 2020 — Contents (theaustralian.com.au)
2019年:Best Poster award entitled “Black Silicon Characterisation with Advanced Electron Microscopy Techniques”, in the Asia Pacific Solar Research Conference 2019, Canberra, Australia.
研究方向:
1. 黑硅太阳能电池的制备与优化,黑硅太阳能电池的光学损失与材料缺陷研究
2. 硅太阳能电池的光学模拟
3. 硅太阳能电池与叠层太阳能电池的失效分析
科研项目:
3. “Integrating industrial black silicon with high efficiency multicrystalline solar cells”, Australian Renewable Energy Agency (ARENA) DP010, 2018-2021,已结题,参与.
2. “Development and commercialisation of high efficiency silicon solar cell technology”, Australian Renewable Energy Agency (ARENA) 1-A060-extension, 2017-2021,已结题,参与.
1. “Advanced manufacturing of solar cells using cutting-edge hydrogenation”, Global Innovation Linkages (Department of Industry, Innovation and Science), 2017-2020, 已结题,参与.
代表论文:
[1] Y. Zhang, C. Kong, R.S. Davidsen, G. Scardera, L. Duan, K.T. Khoo, D.N.R. Payne, B. Hoex, M. Abbott, 3D characterisation using plasma FIB-SEM: A large-area tomography technique for complex surfaces like black silicon, Ultramicroscopy. 218 (2020) 113084. https://doi.org/10.1016/j.ultramic.2020.113084.
[2] Y. Zhang, C. Kong, G. Scardera, M. Abbott, D.N.R.R. Payne, B. Hoex, Large Volume Tomography Using Plasma FIB-SEM: A Comprehensive Case Study on Black Silicon, Ultramicroscopy. 233 (2021) 113458. https://doi.org/10.1016/j.ultramic.2021.113458.
[3] Y. Zhang, T. Veeken, S. Wang, G. Scardera, M. Abbott, D. Payne, A. Polman, B. Hoex, Plasma Focused Ion Beam Tomography for Accurate Characterization of Black Silicon Validated by Full Wave Optical Simulation, Adv Mater Technol. 7 (2022). https://doi.org/10.1002/admt.202200068.
[4] Y. Zhang, G. Scardera, S. Wang, M. Abbott, D. Payne, B. Hoex, Scanning Electron Microscopy Dopant Contrast Imaging of Phosphorus‐Diffused Silicon, Adv Mater Technol. 8 (2023) 2200737. https://doi.org/10.1002/admt.202200737.
[5] L. Duan, X. Meng, Y. Zhang, H. Yi, K. Jin, F. Haque, C. Xu, Z. Xiao, L. Ding, A. Uddin, Comparative analysis of burn-in photo-degradation in non-fullerene COi8DFIC acceptor based high-efficiency ternary organic solar cells, Mater Chem Front. 3 (2019) 1085–1096. https://doi.org/10.1039/C9QM00130A.
[6] T.H. Fung, M.U. Khan, Y. Zhang, N.J. Western, D.N.R.R. Payne, K.R. McIntosh, M.D. Abbott, K.R. Mclntosh, M.D. Abbott, Improved Ray Tracing on Random Pyramid Texture via Application of Phong Scattering, IEEE J Photovolt. 9 (2019) 591–600. https://doi.org/10.1109/JPHOTOV.2019.2894688.
[7] F. Haque, H. Yi, L. Duan, Y. Zhang, M. Wright, G. Conibeer, A. Uddin, Optimisation of annealing temperature for low temperature processed inverted structure Caesium Formamidinium Lead Triiodide perovskite solar cells, Mater Sci Semicond Process. 102 (2019) 104580. https://doi.org/https://doi.org/10.1016/j.mssp.2019.06.015.
[8] L. Duan, N.K. Elumalai, Y. Zhang, A. Uddin, Progress in non-fullerene acceptor based organic solar cells, Solar Energy Materials and Solar Cells. 193 (2019) 22–65. https://doi.org/https://doi.org/10.1016/j.solmat.2018.12.033.
[9] H. Yi, D. Wang, L. Duan, F. Haque, C. Xu, Y. Zhang, G. Conibeer, A. Uddin, Solution-processed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell, Electrochim Acta. 319 (2019) 349–358. https://doi.org/https://doi.org/10.1016/j.electacta.2019.06.134.
[10] Z.G. Huang, K. Gao, X.G. Wang, C. Xu, X.M. Song, L.X. Shi, Y. Zhang, B. Hoex, W.Z. Shen, K. Gao, X.G. Wang, C. Xu, X.M. Song, L.X. Shi, Y. Zhang, B. Hoex, Large-area MACE Si nano-inverted-pyramids for PERC solar cell application, Solar Energy. 188 (2019) 300–304. https://doi.org/10.1016/j.solener.2019.06.015.
[11] L. Duan, H. Yi, Y. Zhang, F. Haque, C. Xu, A. Uddin, Comparative study of light- and thermal-induced degradation for both fullerene and non-fullerene-based organic solar cells, Sustain Energy Fuels. 3 (2019) 723–735. https://doi.org/10.1039/c8se00567b.
[12] L. Duan, H. Yi, Z. Wang, Y. Zhang, F. Haque, B. Sang, R. Deng, A. Uddin, Semitransparent organic solar cells based on PffBT4T-2OD with a thick active layer and near neutral colour perception for window applications, Sustain Energy Fuels. 3 (2019) 2456–2463. https://doi.org/10.1039/C9SE00413K.
[13] L. Duan, Y. Zhang, H. Yi, F. Haque, R. Deng, H. Guan, Y. Zou, A. Uddin, Trade-Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6-Sensitized Nonfullerene Ternary Organic Solar Cells, Energy Technology. 1900924 (2019) 1–12. https://doi.org/10.1002/ente.201900924.
[14] L. Duan, B. Sang, M. He, Y. Zhang, M.A. Hossain, M.H. Rahaman, Q. Wei, Y. Zou, A. Uddin, B. Hoex, Interface Modification Enabled by Atomic Layer Deposited Ultra-Thin Titanium Oxide for High-Efficiency and Semitransparent Organic Solar Cells, Solar RRL. 4 (2020) 2000497. https://doi.org/https://doi.org/10.1002/solr.202000497.
[15] G.K. Poduval, L. Duan, Md.A. Hossain, B. Sang, Y. Zhang, Y. Zou, A. Uddin, B. Hoex, High-Efficiency Nonfullerene Organic Solar Cells Enabled by Atomic Layer Deposited Zirconium-Doped Zinc Oxide, Solar RRL. 4 (2020) 2000241. https://doi.org/https://doi.org/10.1002/solr.202000241.
[16] L. Duan, Y. Zhang, M. He, R. Deng, H. Yi, Q. Wei, Y. Zou, A. Uddin, Burn-In Degradation Mechanism Identified for Small Molecular Acceptor-Based High-Efficiency Nonfullerene Organic Solar Cells, ACS Appl Mater Interfaces. 12 (2020) 27433–27442. https://doi.org/10.1021/acsami.0c05978.
[17] L. Duan, Y. Zhang, H. Yi, F. Haque, C. Xu, S. Wang, A. Uddin, Thermal annealing dependent dielectric properties and energetic disorder in PffBT4T-2OD based organic solar cells, Mater Sci Semicond Process. 105 (2020) 104750. https://doi.org/https://doi.org/10.1016/j.mssp.2019.104750.
[18] T.H. Fung, T.P. Pasanen, Y. Zhang, A. Soeriyadi, V. Vähänissi, G. Scardera, D. Payne, H. Savin, M. Abbott, Improved emitter performance of RIE black silicon through the application of in-situ oxidation during POCl3 diffusion, Solar Energy Materials and Solar Cells. 210 (2020) 110480. https://doi.org/https://doi.org/10.1016/j.solmat.2020.110480.
[19] M. He, J. Huang, J. Li, J.S. Jang, U.P. Suryawanshi, C. Yan, K. Sun, J. Cong, Y. Zhang, H. Kampwerth, M.P. Suryawanshi, J. Kim, M.A. Green, X. Hao, Systematic Efficiency Improvement for Cu2ZnSn(S,Se)4 Solar Cells By Double Cation Incorporation with Cd and Ge, Adv Funct Mater. 31 (2021) 2104528. https://doi.org/https://doi.org/10.1002/adfm.202104528.
[20] M. He, X. Zhang, J. Huang, J. Li, C. Yan, J. Kim, Y.-S. Chen, L. Yang, J.M. Cairney, Y. Zhang, S. Chen, J. Kim, M.A. Green, X. Hao, High Efficiency Cu2ZnSn(S,Se)4 Solar Cells with Shallow LiZn Acceptor Defects Enabled by Solution-Based Li Post-Deposition Treatment, Adv Energy Mater. 11 (2021) 2003783. https://doi.org/https://doi.org/10.1002/aenm.202003783.
[21] G. Scardera, D.N.R. Payne, M.U. Khan, Y. Zhang, A. Soeriyadi, S. Zou, D. Zhang, R.S. Davidsen, O. Hansen, B. Hoex, M.D. Abbott, Silicon Nanotexture Surface Area Mapping Using Ultraviolet Reflectance, IEEE J Photovolt. 11 (2021) 1291–1298. https://doi.org/10.1109/JPHOTOV.2021.3086439.
[22] G. Scardera, S. Wang, Y. Zhang, M.U. Khan, S. Zou, D. Zhang, R.S. Davidsen, O. Hansen, L. Mai, D.N.R.R. Payne, B. Hoex, M.D. Abbott, On the Enhanced Phosphorus Doping of Nanotextured Black Silicon, IEEE J Photovolt. 11 (2021) 298–305. https://doi.org/10.1109/JPHOTOV.2020.3047420.
联系方式:
电子邮箱:zhangyu1@sztu.edu.cn